Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Small ; : e2401347, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716685

RESUMEN

A challenge facing the chlor-alkali process is the lack of electrocatalyst with high activity and selectivity for the efficient industrial production of chlorine. Herein the authors report a new electrocatalyst that can generate multi-interface structure by in situ growth of graphdiyne on the surface of cobalt oxides (GDY/Co3O4), which shows great potential in highly selective and efficient chlorine production. This result is due to the strong electron transfer and high density charge transport between GDY and Co3O4 and the interconversion of the mixed valence states of the Co atoms itself. These intrinsic characteristics efficiently enhance the conductivity of the catalyst, facilitate the reaction kinetics, and improve the overall catalytic selectivity and activity. Besides, the protective effect of the formed GDY layer is remarkable endowing the catalyst with excellent stability. The catalyst can selectively produce chlorine in low-concentration of NaCl aqueous solution at room temperature and pressure with the highest Faraday efficiency of 80.67% and an active chlorine yield rate of 184.40 mg h-1 cm-2, as well as superior long-term stability.

2.
Proc Natl Acad Sci U S A ; 121(13): e2320386121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513101

RESUMEN

Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 µm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.

3.
J Am Chem Soc ; 146(8): 5669-5677, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38350029

RESUMEN

Advanced atomic-level heterointerface engineering provides a promising method for the preparation of next-generation catalysts. Traditional carbon-based heterointerface catalytic performance rely heavily on the undetermined defects in complex and demanding preparation processes, rendering it impossible to control the catalytic performance. Here, we present a general method for the controlled growth of metal atom arrays on graphdiyne (GDY/IrCuOx), and we are surprised to find strong heterointerface strains during the growth. We successfully controlled the thickness of GDY to regulate the heterointerface metal atoms and achieved compressive strain at the interface. Experimental and density functional theory calculation results show that the unique incomplete charge transfer between GDY and metal atoms leads to the formation of strong interactions and significant heterointerface compressive strain between GDY and IrCuOx, which results in high oxidation performances with 1000 mA cm-2 at a low overpotential of 283 mV and long-term stability at large current densities in alkaline simulated seawater. We anticipate that this finding will contribute to construction of high-performance heterogeneous interface structures, leading to the development of new generation of GDY-based heterojunction catalysts in the field of catalysis for future promising performance.

4.
Food Chem ; 439: 138133, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064841

RESUMEN

This study was the first to comprehensively investigate the metabolic mechanism of flavonoid glycosides (FGs) and their contribution to flavor evolution during white tea processing using quantitative descriptive analysis, metabolomics, dose-over-threshold factors and pseudo-first-order kinetics. A total of 223 flavonoids were identified. Total FGs decreased from 7.02 mg/g to 4.35 mg/g during processing, compared to fresh leaves. A total of 86 FGs had a significant impact on the flavor evolution and 9 key flavor FGs were identified. The FG biosynthesis pathway was inhibited during withering, while the degradation pathway was enhanced. This promoted the degradation of 9 key flavor FGs following pseudo-first-order kinetics during withering. The degradation of the FGs contributed to increase the taste acceptance of white tea from -4.18 to 1.32. These results demonstrated that water loss stress during withering induces the degradation of key flavor FGs, contributing to the formation of the unique flavor of white tea.


Asunto(s)
Camellia sinensis , Flavonoides , Flavonoides/análisis , Glicósidos/metabolismo , Camellia sinensis/metabolismo , Metabolómica/métodos , Té/metabolismo
5.
J Oral Sci ; 66(1): 82-84, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37866924

RESUMEN

Customized posts-and-cores have been widely used for improved fitness within a prepared post space. However, in comparison to direct restoration, they necessitate an increased number of appointments for patients. A 24-year-old man presented with a maxillary left canine that had fractured due to trauma 10 months previously. For this case, a digital process was used for simultaneous restoration with a personalized titanium post-and-core and a zirconia crown achieved with an intraoral scanner (IOS) and computer-aided design/computer-aided manufacturing (CAD-CAM). This workflow allowed the restoration to be completed in 2 visits, facilitating more effective and predictable treatment, with reduced time and cost for the patient.


Asunto(s)
Diseño de Prótesis Dental , Titanio , Masculino , Humanos , Adulto Joven , Adulto , Coronas , Circonio , Diseño Asistido por Computadora
6.
Nat Commun ; 14(1): 8208, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081820

RESUMEN

Creating micro/nanostructures containing multi-channel information within responsive hydrogels presents exciting opportunities for dynamically changing functionalities. However, fabricating these structures is immensely challenging due to the soft and dynamic nature of hydrogels, often resulting in unintended structural deformations or destruction. Here, we demonstrate that dehydrated hydrogels, treated by a programmable femtosecond laser, can allow for a robust fabrication of micro/nanostructures. The dehydration enhances the rigidity of the hydrogels and temporarily locks the dynamic behaviours, significantly promoting their structural integrity during the fabrication process. By utilizing versatile dosage domains of the femtosecond laser, we create micro-grooves on the hydrogel surface through the use of a high-dosage mode, while also altering the fluorescent intensity within the rest of the non-ablated areas via a low-dosage laser. In this way, we rationally design a pixel unit containing three-channel information: structural color, polarization state, and fluorescent intensity, and encode three complex image information sets into these channels. Distinct images at the same location were simultaneously printed onto the hydrogel, which can be observed individually under different imaging modes without cross-talk. Notably, the recovered dynamic responsiveness of the hydrogel enables a multi-information-encoded surface that can sequentially display different information as the temperature changes.

7.
Front Bioeng Biotechnol ; 11: 1287890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033816

RESUMEN

Enteric fistula (EF), a serious complication after abdominal surgery, refers to unnatural communication between the gastrointestinal tract and the skin or other hollow organs. It is associated with infection, massive fluid/electrolyte loss, and malnutrition, resulting in an unhealed course. Despite advances in surgical techniques, wound care, infection control, and nutritional support, EF remains associated with considerable morbidity and mortality. Autologous platelet-rich plasma (PRP) containing elevated platelet concentrations has been proposed to promote healing in many tissues. However, the mechanism of action of PRP in EF treatment remains unclear owing to its complicated clinical manifestations. In this review, we summarized the clinical approaches, outlined the principal cytokines involved in the healing effects, and discussed the advantages of PRP for EF therapy. In addition, we defined the mechanism of autologous PRP in EF management, which is essential for further developing EF therapies.

8.
Proc Natl Acad Sci U S A ; 120(42): e2308301120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37792517

RESUMEN

Artificial cilia integrating both actuation and sensing functions allow simultaneously sensing environmental properties and manipulating fluids in situ, which are promising for environment monitoring and fluidic applications. However, existing artificial cilia have limited ability to sense environmental cues in fluid flows that have versatile information encoded. This limits their potential to work in complex and dynamic fluid-filled environments. Here, we propose a generic actuation-enhanced sensing mechanism to sense complex environmental cues through the active interaction between artificial cilia and the surrounding fluidic environments. The proposed mechanism is based on fluid-cilia interaction by integrating soft robotic artificial cilia with flexible sensors. With a machine learning-based approach, complex environmental cues such as liquid viscosity, environment boundaries, and distributed fluid flows of a wide range of velocities can be sensed, which is beyond the capability of existing artificial cilia. As a proof of concept, we implement this mechanism on magnetically actuated cilia with integrated laser-induced graphene-based sensors and demonstrate sensing fluid apparent viscosity, environment boundaries, and fluid flow speed with a reconfigurable sensitivity and range. The same principle could be potentially applied to other soft robotic systems integrating other actuation and sensing modalities for diverse environmental and fluidic applications.


Asunto(s)
Cilios , Magnetismo , Fenómenos Físicos , Hidrodinámica , Fenómenos Magnéticos
9.
Int Immunopharmacol ; 124(Pt B): 110975, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37757634

RESUMEN

Oncolytic virotherapy is an emerging and safe therapeutic approach based on the inherent cytotoxicity of oncolytic viruses and their ability to replicate and spread within tumors in a selective manner. We constructed a new type of oncolytic herpes simplex virus armed with Bispecific Antibody (BsAb) molecules targeting PD-L1/CD3 (oHSV2-PD-L1/CD3-BsAb) to treat human malignancies. We demonstrated the anti-tumor efficacy of oHSV2-PD-L1/CD3-BsAb. To move forward with clinical trials of oHSV2-PD-L1/CD3-BsAb, we conducted a comprehensive preclinical safety evaluation, including hemolysis test, anaphylaxis test, repeated dose toxicity test in cynomolgus monkeys, biodistribution in cynomolgus monkeys and tissue cross-reactivity of PD-L1/CD3-BsAb with human and cynomolgus monkey tissues in vitro. Our preclinical safety evaluation indicated that oHSV2-PD-L1/CD3-BsAb is safe and suitable for clinical trials. After undergoing a thorough evaluation by the United States Food and Drug Administration (FDA), oHSV2-PD-L1/CD3-BsAb has successfully obtained approval to initiate Phase I clinical trials in the United States (FDA IND: 28717).


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Viroterapia Oncolítica , Animales , Humanos , Herpesvirus Humano 2 , Macaca fascicularis , Distribución Tisular , Antígeno B7-H1 , Anticuerpos Biespecíficos/uso terapéutico , Neoplasias/tratamiento farmacológico
10.
Int Wound J ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737032

RESUMEN

Fast track surgery (FTS) is widely used in many procedures and has been shown to reduce complications and accelerate recovery. However, no studies have been conducted to assess their effectiveness in treating wounds after radical prostatectomy (RP). The objective of this study was to evaluate the impact of FTS on RP. We went through 4 major databases. A study was conducted by PubMed, the Cochrane Library, Embase, and the Web of Science to determine the effect of comparison of FTS versus conventional surgery in RP on postoperative wound complications as of 1 July 2023. Based on the review of literature, data extraction and literature quality assessment, we conducted meta-analyses with RevMan 5.3. In the course of the study, the researchers selected 6 of the 404 studies to be analysed according to exclusion criteria. Data analysis showed that the FTS method reduced the postoperative pain associated with VAS and also decreased the rate of postoperative complications in post-surgical patients. However, there was no significant difference between FTS and conventional surgery in terms of blood loss, operation time, and postoperative infection rate. Therefore, generally speaking, FTS has less impact on postoperative complications in patients with minimal invasive prostatic cancer, but it does reduce postoperative pain and total postoperative complications.

11.
Nat Mater ; 22(10): 1243-1252, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37604911

RESUMEN

Stimuli-responsive geometric transformations endow metamaterials with dynamic properties and functionalities. However, using existing transformation mechanisms to program a single geometry to transform into diverse final configurations remains challenging, imposing crucial design restrictions on achieving versatile functionalities. Here, we present a programmable strategy for wide-spectrum reconfigurable micro-metastructures using linearly responsive transparent hydrogels as artificial muscles. Actuated by the hydrogel, the transformation of micro-metastructures arises from the collaborative buckling of their building blocks. Rationally designing the three-dimensional printing parameters and geometry features of the metastructures enables their locally isotropic or anisotropic deformation, allowing controllable wide-spectrum pattern transformation with programmable chirality and optical anisotropy. This reconfiguration mechanism can be applied to various materials with a wide range of mechanical properties. Our strategy enables a thermally reconfigurable printed metalattice with pixel-by-pixel mapping of different printing powers and angles for displaying or hiding complex information, providing opportunities for encryption, miniature robotics, photonics and phononics applications.

12.
ChemSusChem ; 16(23): e202300861, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37578808

RESUMEN

Graphdiyne, a sp/sp2 -cohybridized two-dimensional all- carbon material, has many unique and fascinating properties of alkyne-rich structures, large π conjugated system, uniform pores, specific unevenly-distributed surface charge, and incomplete charge transfer properties provide promising potential in practical applications including catalysis, energy conversion and storage, intelligent devices, life science, photoelectric, etc. These superior advantages have made graphdiyne one of the hottest research frontiers of chemistry and materials science and produced a series of original and innovative research results in the fundamental and applied research of carbon materials. In recent years, considerable advances have been made toward the development of graphdiyne-based multiscale catalysts for nitrogen fixation and ammonia synthesis at room temperatures and ambient pressures. This review aims to provide a comprehensive update in regard to the synthesis of graphdiyne-based multiscale catalysts and their applications in the synthesis of ammonia. The unique features of graphdiyne are highlighted throughout the review. Finally, it concludes with the discussion of challenges and future perspectives relating to graphdiyne.

13.
Adv Sci (Weinh) ; 10(31): e2304062, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37635132

RESUMEN

Limited by preparation time and ligand solubility, synthetic protocols for cyclodextrin-based metal-organic framework (CD-MOF), as well as subsequent derived materials with improved stability and properties, still remains a challenge. Herein, an ultrafast, environmentally friendly, and cost-effective microwave method is proposed, which is induced by graphene oxide (GO) to design CD-MOF/GOs. This applicable technique can control the crystal size of CD-MOFs from macro- to nanocrystals. CD-MOF/GOs are investigated as a new type of supramolecular adsorbent. It can selectively adsorb the dye molecule methylene green (MG) owing to the synergistic effect between the hydrophobic nanocavity of CDs, and the abundant O-containing functional groups of GO in the composites. Following high temperature calcination, the resulting N, S co-doped porous carbons derived from CD-MOF/GOs exhibit a high capacitance of 501 F g-1 at 0.5 A g-1 , as well as stable cycling stability with 90.1% capacity retention after 5000 cycles. The porous carbon exhibits good electrochemical performance due to its porous surface containing numerous electrochemically active sites after dye adsorption and carbonization. The design strategy by supramolecular incorporating a variety of active molecules into CD-MOFs optimizes the properties of their derived materials, furthering development toward the fabrication of zeitgeisty and high-performance energy storage devices.

14.
Natl Sci Rev ; 10(8): nwad156, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37427022

RESUMEN

The development of catalysts that can selectively and efficiently promote the alkene epoxidation at ambient temperatures and pressures is an important promising path to renewable synthesis of various chemical products. Here we report a new type of zerovalent atom catalysts comprised of zerovalent Ir atoms highly dispersed and anchored on graphdiyne (Ir0/GDY) wherein the Ir0 is stabilized by the incomplete charge transfer effect and the confined effect of GDY natural cavity. The Ir0/GDY can selectively and efficiently produce styrene oxides (SO) by electro-oxidizing styrene (ST) in aqueous solutions at ambient temperatures and pressures with high conversion efficiency of ∼100%, high SO selectivity of 85.5%, and high Faradaic efficiency (FE) of 55%. Experimental and density functional theory (DFT) calculation results show that the intrinsic activity and stability due to the incomplete charge transfer between Ir0 and GDY effectively promoted the electron exchange between the catalyst and reactant molecule, and realized the selective epoxidation of ST to SO. Studies of the reaction mechanism demonstrate that Ir0/GDY proceeds a distinctive pathway for highly selective and active alkene-to-epoxide conversion from the traditional processes. This work presents a new example of constructing zerovalent metal atoms within the GDY matrix toward selective electrocatalytic epoxidation.

15.
Adv Sci (Weinh) ; 10(23): e2302409, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37288527

RESUMEN

To navigate in complex and unstructured real-world environments, soft miniature robots need to possess multiple functions, including autonomous environmental sensing, self-adaptation, and multimodal locomotion. However, to achieve multifunctionality, artificial soft robots should respond to multiple stimuli, which can be achieved by multimaterial integration using facile and flexible fabrication methods. Here, a multimaterial integration strategy for fabricating soft millirobots that uses electrodeposition to integrate two inherently non-adherable materials, superhydrophilic hydrogels and superhydrophobic elastomers, together via gel roots is proposed. This approach enables the authors to electrodeposit sodium alginate hydrogel onto a laser-induced graphene-coated elastomer, which can then be laser cut into various shapes to function as multi-stimuli-responsive soft robots (MSRs). Each MSR can respond to six different stimuli to autonomously transform their shapes, and mimic flowers, vines, mimosas, and flytraps. It is demonstrated that MSRs can climb slopes, switch locomotion modes, self-adapt between air-liquid environments, and transport cargo between different environments. This multimaterial integration strategy enables creating untethered soft millirobots that have multifunctionality, such as environmental sensing, self-propulsion, and self-adaptation, paving the way for their future operation in complex real-world environments.

16.
Cancer Sci ; 114(8): 3396-3410, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290894

RESUMEN

Gastric cancer (GC) has high rates of morbidity and mortality, and this phenomenon is particularly evident in coastal regions where local dietary habits favor the consumption of pickled foods such as salted fish and vegetables. In addition, the diagnosis rate of GC remains low due to the lack of diagnostic serum biomarkers. Therefore, in this study, we aimed to identify potential serum GC biomarkers for use in clinical practice. To identify candidate biomarkers of GC, 88 serum samples were first screened using a high-throughput protein microarray to measure the levels of 640 proteins. Then, 333 samples were used to validate the potential biomarkers using a custom antibody chip. ELISA, western blot, and immunohistochemistry were then used to verify the expression of the target proteins. Finally, logistic regression was performed to select serum proteins for the diagnostic model. As a result, five specific differentially expressed proteins, TGFß RIII, LAG-3, carboxypeptidase A2, Decorin and ANGPTL3, were found to have the ability to distinguish GC. Logistic regression analysis showed that the combination of carboxypeptidase A2 and TGFß RIII had superior potential for diagnosing GC (area under the ROC curve [AUC] = 0.801). The results suggested that these five proteins alone and the combination of carboxypeptidase A2 and TGFß RIII may be used as serum markers for the diagnosis of GC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Gástricas , Humanos , Análisis por Matrices de Proteínas , Neoplasias Gástricas/diagnóstico , Carboxipeptidasas A , Detección Precoz del Cáncer , Curva ROC , Proteína 3 Similar a la Angiopoyetina
17.
BMC Oral Health ; 23(1): 410, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344826

RESUMEN

BACKGROUND: The purpose of this study is to investigate the performance and fracture resistance of different resin-matrix ceramic materials for use in implant-supported single crowns with respect to the abutment design (crown thickness: 1 mm, 2 and 3 mm). METHODS: Forty-eight abutments and crowns were fabricated on implants in the right lower first molar. Two resin-matrix ceramic materials for dental crowns were selected for study: (1) a glass-ceramic in a resin interpenetrating matrix (Vita Enamic, Vita, Germany) and (2) a resin-based composite with nanoparticle ceramic filler (Lava Ultimate, 3 M ESPE, USA). Three types of abutments were designed: 1 mm thick crown + custom titanium abutment, 2 mm thick crown + custom titanium abutment and 3 mm thick crown + prefabricated titanium abutment. The experiment was divided into 6 groups (n = 8) according to the crown materials and abutment designs. After 10,000 thermocycles, fracture resistance was measured using a universal testing machine. The statistical significance of differences between various groups were analysed with ANOVA followed by a post hoc Tukey's honestly significant difference test. The surfaces of the fractured specimens were examined with scanning electron microscopy (SEM). RESULTS: Two-way ANOVA revealed that the abutment design (F = 28.44, P = 1.52 × 10- 8<0.001) and the crown materials (F = 4.37, P = 0.043 < 0.05) had a significant effect on the fracture resistance of implant crown restoration. The Lava Ultimate-2 mm group showed the highest fracture resistance of 2222.74 ± 320.36 N, and the Vita Enamic-3 mm group showed the lowest fracture resistance of 1204.96 ± 130.50 N. Most of the 1 and 2 mm groups had partial crown fractures that could be repaired directly with resin, while the 3 mm group had longitudinal fracture of the crown, and the crowns were detached from the abutments. CONCLUSION: Based on the in vitro data of this study, the fracture resistance of the 2 mm thick resin-matrix ceramic crown design was higher than that of the 1 and 3 mm groups. The 2 mm thick resin-matrix ceramic crown and personalized abutment are an option to replace zirconia for implant crown restoration.


Asunto(s)
Implantes Dentales , Humanos , Coronas , Titanio , Cerámica , Porcelana Dental , Ensayo de Materiales , Fracaso de la Restauración Dental , Análisis del Estrés Dental , Diseño Asistido por Computadora
18.
Chem Sci ; 14(17): 4612-4619, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37152260

RESUMEN

Graphdiyne (GDY) is a promising material possessing extensive electronic tunability, high π conjugacy, and ordered porosity at a molecular level for the sp/sp2-hybridized periodic structures. Despite these advantages, the preparation of soluble and crystalline graphdiyne is limited by the relatively compact stacking interactions, mostly existing in thick-layer and insoluble solids. Herein, we proposed a strategy of "framework charge-induced intercalation (FCII)" for the synthesis of a soluble (4.3 mg ml-1) and yet interlayer-expanded (∼0.6 Å) crystalline ionic graphdiyne, named as N+-GDY, through regulating the interlayer interactions. The skeleton of such a sample is positively charged, and then the negative ions migrate to the interlayer to expand the space, endowing the N+-GDY with solution processability. The crystal structure of N+-GDY is proved through analysis of HR-TEM images under different axes of observation and theoretical simulations. The resulting N+-GDY possesses high dispersity in organic solvents to produce a pure-solution phase which is conducive to the formation of oriented N+-GDY films, accompanied by exfoliation-nanosheet restacking. The film exhibits a conductivity of 0.014 S m-1, enabling its applications in electronic devices.

19.
Chem Commun (Camb) ; 59(49): 7611-7614, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37254822

RESUMEN

The development of new catalysts with high selectivity and efficiency for the electrocatalytic nitrate reduction reaction (NtRR) to produce ammonia (NH3) at room temperature and ambient pressure is still a challenge. Herein, we report a simple in situ growth method for the controlled synthesis of a GDY-MnOx heterointerface by selectively anchoring and growing MnOx on GDY surfaces. Experimental results show that the incomplete charge-transfer between GDY and Mn atoms at the interface structures largely increases the number of active sites, improves the electrical conductivity, and therefore results in excellent electrocatalytic performance for NH3 synthesis with a maximum FE of 95.4%, an NH3 yield rate of 463.4 µmol h-1 cm-2 and high long-term stability in 0.1 M KOH + 0.1 M NO3- aqueous electrolytes at room temperature and ambient pressure.


Asunto(s)
Amoníaco , Nitratos , Conductividad Eléctrica
20.
RSC Adv ; 13(11): 7153-7167, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36875875

RESUMEN

In situ bioprinting provides a reliable solution to the problem of in vitro tissue culture and vascularization by printing tissue directly at the site of injury or defect and maturing the printed tissue using the natural cell microenvironment in vivo. As an emerging field, in situ bioprinting is based on computer-assisted scanning results of the defect site and is able to print cells directly at this site with biomaterials, bioactive factors, and other materials without the need to transfer prefabricated grafts as with traditional in vitro 3D bioprinting methods, and the resulting grafts can accurately adapt to the target defect site. However, one of the important reasons hindering the development of in situ bioprinting is the absence of suitable bioinks. In this review, we will summarize bioinks developed in recent years that can adapt to in situ printing scenarios at the defect site, considering three aspects: the in situ design strategy of bioink, the selection of commonly used biomaterials, and the application of bioprinting to different treatment scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...